
Los Alamos National Laboratory Associate Directorate for Theory, Simulation, and Computation (ADTSC) LA-UR 12-2042974

iTransformer: Using SSD to Improve Disk Scheduling for
High-Performance I/O

Kei Davis, CCS-7; Song Jiang, Xuechen Zhang,
Wayne State University

As part of an ongoing collaboration the authors worked together at LANL during the summer of 2011
under the DOE Faculty and Student Team (FaST) program. Here we briefly summarize one of the
summer’s efforts, notably enabled by the availability of the CCS-7 experimental cluster Darwin. This
work contributed to CCS-7 research into common runtime elements for programming models for
increasingly parallel scientific applications and computing platforms [1].

Data-intensive scientific computing applications are producing
increasingly high Input/Output (I/O) demands on the storage

devices of high-performance computing systems. Request concurrency,
or the number of processes concurrently issuing requests, can be
very high at data servers that are serving requests from applications
running on a large-scale cluster. Besides the potentially large volume
of requested data, this concurrency can significantly compromise the
efficiency of a hard-disk-based storage system: data on a disk that are
requested by different processes or programs are usually spatially
separated on the disk, and concurrently accessing them can cause the
disk heads to frequently seek from track to track, potentially delivering
an I/O throughput an order of magnitude lower (or worse) than that for
sequential disk access.

The emerging solid state drive (SSD) is largely unaffected by random
access because it is, effectively, a uniform memory access device.
However, it is currently not economical in high-performance computing
for use as the main storage in a large-scale installation. More

cost-effective and practical options are either to use an SSD as buffer
cache between main (dynamic random-access memory, DRAM) memory
and the hard disk and exploit workloads’ locality for data caching, or
use SSD with a hard disk to form a hybrid storage device such that
frequently accessed data is stored on the SSD.

These schemes for SSD usage, however, do not effectively address the
problem of concurrent requests from data-intensive parallel programs.
First, the data accessed in a single run of such a program can be larger
than the capacity of the SSD. When a program processes a large data
set, data are rarely accessed multiple times from the disk, and the
accesses therefore exhibit weak temporal locality, which is hard to
exploit for effective caching by a relatively small SSD. Second, requests
to a disk are usually interleaved from different processes of one or
multiple programs. Most existing SSD-based schemes exploit spatial
locality, that is, they attempt placement of randomly accessed data on
the SSD such that the hard disk serves requests of sequential, or at
least well-ordered, data. However, when the request concurrency is
high, it is highly likely that most requests from different processes will
be presented to the disk as random access and will need to be handled
by the SSD. This would overwhelm the SSD as a cache, or as a small
storage device for random data, and make these schemes ineffective.

In the operating system, the I/O scheduler is the last opportunity to
exploit spatial locality in the presence of high request concurrency.
For example, CFQ, the default Linux disk scheduler, reduces random
data accesses by merging and sorting outstanding requests according
to their logical block addresses (LBA). Outstanding requests are kept
in a data structure called a dispatch queue. The larger the queue, the
more requests can be collected for sorting and the greater the chance to

Fig. 1. I/O throughput of a data server
running IOzone with (a) 128 threads;
and, (b) 256 threads. In each figure
I/O throughputs with differing dispatch
queue sizes and differing data access
patterns are shown.

www.lanl.gov/orgs/adtsc/publications.php 75

INFORMATION SCIENCE AND TECHNOLOGY

exploit spatial locality. The default queue depth in Linux’s
CFQ is 128.

We started by investigating the effect of simply increasing
queue size on I/O performance in the presence of request
concurrency by running IOzone, a commonly used file
system benchmark, to generate a variety of file operations
with varying queue size on a data server running Linux
with CFQ to access data on a hard disk. Figure 1 shows I/O
throughputs reported by the benchmark for access patterns
Sequential Read/Write, Reverse Read, and Random Read/
Write, with queue sizes 128 and 8192, with either 128
threads (Fig. 1a) or 256 threads (Fig. 1b).

This investigation showed that increasing queue size can
significantly improve performance for Sequential Read/
Write and Reverse Read. When the queue size is increased
to 8192 the throughputs are significantly increased by
42% to 650%. This demonstrates that a large queue can
effectively recover spatial locality if it exists in requests
from the same thread. However, when individual threads
issue fully random requests, the I/O throughputs are very
low and the improvements made by the increased queue
size are also small. This shows that random requests are at
best difficult to schedule for efficient service by hard disk.

While increasing the size of the dispatch queue in memory
can improve access locality for higher disk efficiency, by
itself the approach has limitations. First, having a large
queue would allow many write requests to be outstanding
in volatile DRAM memory, running the risk of losing a
large amount of data where frequent system failures are
expected to be the norm. Second, although a long queue
usually improves throughput, it can allow requests to
remain in the queue for an extended period of time without
being completed, which may result in excessive response
times for those requests—for applications with strict
quality of service (QoS) requirements a long queue can be

[1] Zhang, X. et al., “iTransformer: Using SSD to Improve Disk Scheduling for
High-performance I/O,” 26th IEEE Int Parallel Distr Process Symp, to appear
(2012).

Funding Acknowledgments
DOE NNSA, Advanced Simulation and Computing, Computational Systems and
Software Environments

For more information contact Kei Davis at Kei@lanl.gov

Fig. 2. Accessed locations when running ior-mpi-
io using read requests in a sampled one-second
execution period. (a) The locations are on the
hard disk and the stock system is used. (b) The
locations are on the hard disk and the system with
iTransformer. (c) The locations are on the SSD
and the system with iTransformer.

problematic. Third, as we showed in the experiments, simply increasing
the queue size may not be sufficient, especially for addressing the issue
of concurrency among streams of random requests.

Our design started with extending the scheduler’s dispatch queue using
SSD to hold the extension. Various algorithmic techniques were devised
to overcome all of the aforementioned limitations. Our implementation of
this scheduling architecture and the scheduling algorithm, collectively
called iTransformer, is as a stand-alone Linux kernel module. The
implementation is transparent to the software above the generic block
layer in the kernel memory hierarchy and is therefore portable across
different parallel file systems. Our evaluation of iTransformer was
performed on the CSS-7 Darwin Cluster with a suite of representative
benchmarks. We used 48 processes per node (one process per core on
the DL585 nodes), one SSD per node, and the PVFS2 parallel virtual file
system. iTransformer significantly reduced random access of the hard
disks and increased I/O throughput of the storage system by up to three
times and 35% on average, as compared to the stock system, for the
benchmarks, using a mere 8 GB of each SSD. Figure 2 gives an example
of how accesses are serialized to hard disk.

